266 research outputs found

    Symbolic integration of a product of two spherical bessel functions with an additional exponential and polynomial factor

    Full text link
    We present a mathematica package that performs the symbolic calculation of integrals of the form \int^{\infty}_0 e^{-x/u} x^n j_{\nu} (x) j_{\mu} (x) dx where jν(x)j_{\nu} (x) and jμ(x)j_{\mu} (x) denote spherical Bessel functions of integer orders, with ν0\nu \ge 0 and μ0\mu \ge 0. With the real parameter u>0u>0 and the integer nn, convergence of the integral requires that n+ν+μ0n+\nu +\mu \ge 0. The package provides analytical result for the integral in its most simplified form. The novel symbolic method employed enables the calculation of a large number of integrals of the above form in a fraction of the time required for conventional numerical and Mathematica based brute-force methods. We test the accuracy of such analytical expressions by comparing the results with their numerical counterparts.Comment: 17 pages; updated references for the introductio

    Review Work on Body Weight and Egg Production Performance of Chickens in Ethiopia

    Get PDF
    Different breeds of exotic chickens were imported to Ethiopia with the aim of improving chicken productivity. Moreover, one way of improving low genetic potential of local chickens is crossbreeding programs of local chickens with exotic chicken breeds. For further improvement in production traits, understanding performance of economic traits in chicken is important for the formulation of breeding plans. Therefore, the objective of this review paper is to review egg and body weight performance of chickens in Ethiopia. Breed of chicken used, environmental conditions, and management practices are the main factor that affects chicken productivity. The average egg production and body weight performance of chickens is higher in exotic breed followed by cross and local ones. However, poor performance of exotic chickens is observed in situations where the breeds are poorly managed. The performance of crossbreds reduces gradually as the percent of genes goes beyond 50 but the management gets down. With regard to local ones, better management and proper breeding technique do have a chance for upgrading. Therefore, better management, proper breeding activities and regulatory laws should be imposed to enhance chicken productivities. Keywords: Egg, Body weight, Local, Exotic, Crossbreed, Chicken DOI: 10.7176/JBAH/9-8-03 Publication date: April 30th 201

    Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    Get PDF
    In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2\chi^2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.Comment: 17 pages, 6 figure

    Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    Full text link
    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam {\it et al.} to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N2^2LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a cutoff-dependent coupling {\it constant} arising from zero-range contact interactions and a cutoff-independent coupling {\it function} of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A Mathematica notebook containing the novel density-dependent couplings is provided.Comment: 28 pages, 12 figures. Mathematica notebook provided with submission

    Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces

    Full text link
    A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin-asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value A(ρ0)26.5A(\rho_0) \simeq 26.5\,MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin- and density-dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.Comment: 14 pages, 7 figures, to be published in European Physical Journal

    Low-Temperature Orientation Dependence of Step Stiffness on {111} Surfaces

    Get PDF
    For hexagonal nets, descriptive of {111} fcc surfaces, we derive from combinatoric arguments a simple, low-temperature formula for the orientation dependence of the surface step line tension and stiffness, as well as the leading correction, based on the Ising model with nearest-neighbor (NN) interactions. Our formula agrees well with experimental data for both Ag and Cu{111} surfaces, indicating that NN-interactions alone can account for the data in these cases (in contrast to results for Cu{001}). Experimentally significant corollaries of the low-temperature derivation show that the step line tension cannot be extracted from the stiffness and that with plausible assumptions the low-temperature stiffness should have 6-fold symmetry, in contrast to the 3-fold symmetry of the crystal shape. We examine Zia's exact implicit solution in detail, using numerical methods for general orientations and deriving many analytic results including explicit solutions in the two high-symmetry directions. From these exact results we rederive our simple result and explore subtle behavior near close-packed directions. To account for the 3-fold symmetry in a lattice gas model, we invoke a novel orientation-dependent trio interaction and examine its consequences.Comment: 11 pages, 8 figure

    Nuclear energy density functional from chiral two- and three-nucleon interactions

    Full text link
    An improved density-matrix expansion is used to calculate the nuclear energy density functional from chiral two- and three-nucleon interactions. The two-body interaction comprises long-range one- and two-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition we employ the leading order chiral three-nucleon interaction with its parameters cE,cDc_E, c_D and c1,3,4c_{1,3,4} fixed in calculations of nuclear few-body systems. With this input the nuclear energy density functional is derived to first order in the two- and three-nucleon interaction. We find that the strength functions F(ρ)F_\nabla(\rho) and Fso(ρ)F_{so}(\rho) of the surface and spin-orbit terms compare in the relevant density range reasonably with results of phenomenological Skyrme forces. However, an improved description requires (at least) the treatment of the two-body interaction to second order. This observation is in line with the deficiencies in the nuclear matter equation of state Eˉ(ρ)\bar E(\rho) that remain in the Hartree-Fock approximation with low-momentum two- and three-nucleon interactions.Comment: 16 pages, 12 figures, submitted to Eur. Phys. J.

    Instabilities in the Nuclear Energy Density Functional

    Full text link
    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.Comment: Special issue "Open Problems in Nuclear Structure Theory" of Jour.Phys.G - accepted. 7 pages, 2 figure
    corecore